局部加权学习算法(LWR)

局部加权回归(LWR)是非参数学习方法。 首先参数学习方法是这样一种方法:在训练完成所有数据后得到一系列训练参数,然后根据训练参数来预测新样本的值,这时不再依赖之前的训练数据了,参数值是确定的。而非参数学习方法是这样一种算法:在预测新样本值时候每次都会重新训练数据得到新的参数值,也就是说每次预测新样本都会依赖训练数据集合,所以每次得到的参数值是不确定的。局部加权回归(LWR)是我们遇到的第一个non-parametric(非参数)学习算法,而线性回归则是我们遇到的以一个parametric(参数)学习算法。因为参数学习算法它有固定的明确的参数,所以参数一旦确定,就不会改变了,我们不需要在保留训练集中的训练样本。而非参数学习算法,每进行一次预测,就需要重新学习一组,是变化的,所以需要一直保留训练样本。因而,当训练集的容量较大时,非参数学习算法需要占用更多的存储空间,计算速度也较慢。所以有得必有失,效果好了,计算速度却降下来了。

应用案例

# coding: utf-8
# linear_regression/regression.py

def JLwr(theta, X, y, x, c):
"""局部加权线性回归的代价函数计算式

Args:
theta: 相关系数矩阵
X: 样本集矩阵
y: 标签集矩阵
x: 待预测输入
c: tau
Returns:
预测代价
"""
m,n = X.shape
summerize = 0
for i in range(m):
diff = (X[i]-x)*(X[i]-x).T
w = np.exp(-diff/(2*c*c))
predictDiff = np.power(y[i] - X[i]*theta,2)
summerize = summerize + w*predictDiff
return summerize

@exeTime
def lwr(rate, maxLoop, epsilon, X, y, x, c=1):
"""局部加权线性回归

Args:
rate: 学习率
maxLoop: 最大迭代次数
epsilon: 预测精度
X: 输入样本
y: 标签向量
x: 待预测向量
c: tau
"""
m,n = X.shape
# 初始化theta
theta = np.zeros((n,1))
count = 0
converged = False
error = float('inf')
errors = []
thetas = {}
for j in range(n):
thetas[j] = [theta[j,0]]
# 执行批量梯度下降
while count<=maxLoop:
if(converged):
break
count = count + 1
for j in range(n):
deriv = (y-X*theta).T*X[:, j]/m
theta[j,0] = theta[j,0]+rate*deriv
thetas[j].append(theta[j,0])
error = JLwr(theta, X, y, x, c)
errors.append(error[0,0])
# 如果已经收敛
if(error < epsilon):
converged = True
return theta,errors,thetas

结果

# coding: utf-8
# linear_regression/test_lwr.py
import regression
import matplotlib.pyplot as plt
import matplotlib.ticker as mtick
import numpy as np

if __name__ == "__main__":
srcX, y = regression.loadDataSet('data/lwr.txt');

m,n = srcX.shape
srcX = np.concatenate((srcX[:, 0], np.power(srcX[:, 0],2)), axis=1)
# 特征缩放
X = regression.standardize(srcX.copy())
X = np.concatenate((np.ones((m,1)), X), axis=1)

rate = 0.1
maxLoop = 1000
epsilon = 0.01

predicateX = regression.standardize(np.matrix([[8, 64]]))

predicateX = np.concatenate((np.ones((1,1)), predicateX), axis=1)

result, t = regression.lwr(rate, maxLoop, epsilon, X, y, predicateX, 1)
theta, errors, thetas = result

result2, t = regression.lwr(rate, maxLoop, epsilon, X, y, predicateX, 0.1)
theta2, errors2, thetas2 = result2


# 打印特征点
fittingFig = plt.figure()
title = 'polynomial with bgd: rate=%.2f, maxLoop=%d, epsilon=%.3f'%(rate,maxLoop,epsilon)
ax = fittingFig.add_subplot(111, title=title)
trainingSet = ax.scatter(srcX[:, 0].flatten().A[0], y[:,0].flatten().A[0])

print theta
print theta2

# 打印拟合曲线
xx = np.linspace(1, 7, 50)
xx2 = np.power(xx,2)
yHat1 = []
yHat2 = []
for i in range(50):
normalizedSize = (xx[i]-xx.mean())/xx.std(0)
normalizedSize2 = (xx2[i]-xx2.mean())/xx2.std(0)
x = np.matrix([[1,normalizedSize, normalizedSize2]])
yHat1.append(regression.h(theta, x.T))
yHat2.append(regression.h(theta2, x.T))
fittingLine1, = ax.plot(xx, yHat1, color='g')
fittingLine2, = ax.plot(xx, yHat2, color='r')

ax.set_xlabel('temperature')
ax.set_ylabel('yield')

plt.legend([trainingSet, fittingLine1, fittingLine2], ['Training Set', r'LWR with $\tau$=1', r'LWR with $\tau$=0.1'])
plt.show()

# 打印误差曲线
errorsFig = plt.figure()
ax = errorsFig.add_subplot(111)
ax.yaxis.set_major_formatter(mtick.FormatStrFormatter('%.2e'))

ax.plot(range(len(errors)), errors)
ax.set_xlabel('Number of iterations')
ax.set_ylabel('Cost J')

plt.show()

最后,我们分别对ττ取值 0.10.1 和 11 ,得到了不同的拟合曲线:

原文:https://github.com/KeKe-Li/tutorial