弹性网络
弹性网络(Elastic Net) 弹性网络是一种使用 L1,L2范数作为先验正则项训练的线性回归模型.这种组合允许学习到一个只有少量参数是非零稀疏的模型,就像 Lasso一样,但是它仍然保持一些像Ridge的正则性质。我们可利用 l1_ratio 参数控制L1和L2的凸组合。弹性网络是一不断叠代的方法。 弹性网络最妙的地方是它永远可以产生有效解。由于它不会产生交叉的路径,所以产生的解都相 ...
Lasso算法
Lasso算法(least absolute shrinkage and selection operator) Lasso算法(least absolute shrinkage and selection operator,又译最小绝对值收敛和选择算子、套索算法)是一种同时进行特征选择和正则化(数学)的回归分析方法,旨在增强统计模型的预测准确性和可解释性,最初由斯坦福大学统计学教授Robert ...
岭回归
岭回归(Ridge Regression) 岭回归(ridge regression, Tikhonov regularization)是一种专用于共线性数据分析的有偏估计回归方法,实质上是一种改良的最小二乘估计法,通过放弃最小二乘法的无偏性,以损失部分信息、降低精度为代价获得回归系数更为符合实际、更可靠的回归方法,对病态数据的拟合要强于最小二乘法。 岭回归,又称脊回归、吉洪诺夫正则化(Tikho ...
逻辑回归
逻辑回归 逻辑回归对应线性回归,但旨在解决分类问题,即将模型的输出转换为0/1值。逻辑回归直接对分类的可能性进行建模,无需事先假设数据的分布。 最理想的转换函数是单位阶跃函数(也称Heaviside函数),但单位阶跃函数是不连续的,没法在实际计算中使用。故而,在分类过程中更常使用对数几率函数(即sigmoid函数): 这样,模型就变成了 如果将$y$看作是样本$x$作为正例的可能性,那 ...
线性回归
线性回归 线性回归是最简单的回归方法,它的目标是使用超平面拟合数据集,即学习一个线性模型以尽可能准确的预测实值输出标记。线性回归是利用数理统计中回归分析,来确定两种或两种以上变量间相互依赖的定量关系的一种统计分析方法,运用十分广泛。其表达形式为y = w’x+e,e为误差服从均值为0的正态分布。回归分析中,只包括一个自变量和一个因变量,且二者的关系可用一条直线近似表示,这种回归分析称为一元线性回归 ...
回归算法简介
回归算法 回归方法是对数值型连续随机变量进行预测和建模的监督学习算法。其特点是标注的数据集具有数值型的目标变量。回归的目的是预测数值型的目标值。最直接的办法是依据输入写出一个目标值的计算公式,该公式就是所谓的回归方程(regression equation)。求回归方程中的回归系数的过程就是回归。 常用的回归方法包括: 线性回归:使用超平面拟合数据集 最近邻算法:通过搜寻最相似的训练样本来 ...
孤立点分析
孤立点分析 机器学习是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、算法复杂度理论等多门学科。主要研究计算机怎样模拟或实现人类的学习行为,以获取新的知识和技能,重新组织已有的知识结构,不断的改善自身的性能。 机器学习理论主要是设计和分析一些让计算机可以自动“学习”的算法。这些算法是一类能从数据中自动分析获得规律,并利用规律对未知数据进行预测的算法。简而言之,机器学习主要以数据为基础,通过 ...
线性判别分析
线性判别分析(Linear Discriminate Analysis ,LDA) 线性判别式分析(Linear Discriminant Analysis, LDA),也叫做Fisher线性判别(Fisher Linear Discriminant ,FLD),是模式识别的经典算法,它是在1996年由Belhumeur引入模式识别和人工智能领域的。线性判别分析是一种经典的线性分类方法。它设法将数 ...
径向基函数
径向基函数(RBF,Radial Basis Function)神经网络,是一种对局部逼近的神经网络。是由J.Moody 和C.Darken于20世纪80年代末提出的一种神经网络,径向基函数方法在某种程度上利用了多维空间中传统的严格插值法的研究成果。在神经网络的背景下,隐藏单元提供一个“函数”集,该函数集在输入模式向量扩展至隐层空间时为其构建了一个任意的“基”;这个函数集中的函数就被称为径向基函数 ...
支持向量机
支持向量机(SVM) 支持向量机(Support Vector Machine,SVM)是Corinna Cortes和Vapnik在1995年首先提出的,是一种监督式学习的方法,可广泛地应用于统计分类以及回归分析。支持向量机属于一般化线性分类器,这族分类器的特点是他们能够同时最小化经验误差与最大化几何边缘区,因此支持向量机也被称为最大边缘区分类器。 在机器学习中,支持向量机(SVM,还支持矢量网 ...