深度递归神经网络
深度递归神经网络(Deep Recurrent Neural Networks) 递归神经网络(RNN)是两种人工神经网络的总称。一种是时间递归神经网络(Recurrent Neural Networks,RNN),又名循环神经网络,另一种是结构递归神经网络(recursive neural network)。时间递归神经网络的神经元间连接构成矩阵,而结构递归神经网络利用相似的神经网络结构递归构造 ...
深度卷积神经网络
深度卷积神经网络(Deep Convolutional Neural Networks) 深度卷积神经网络(DCNN)在特征识别相关任务中取得的效果,远比传统方法好。因此,DCNN常用于图像识别、语音识别等。但是,因为深度卷积神经网络结构庞大,一般都会包含几十个神经层,每一层,又有数百至数千个神经元;同时,DCNN任意两层之间神经元的相互影响错综复杂。这两个主要的因素,导致DCNN难以理解、分析。 ...
深度信念网络
深度信念网络(Deep Belief Machines) 深度信念网络 (Deep Belief Network, DBN) 由 Geoffrey Hinton 在 2006 年提出。它是一种生成模型,通过训练其神经元间的权重,我们可以让整个神经网络按照最大概率来生成训练数据。我们不仅可以使用 DBN 识别特征、分类数据,还可以用它来生成数据。深度信念网络(Deep Belief Network, ...
深度学习简介
深度学习(Deep Learning) 深度学习的概念源于人工神经网络的研究。含多隐层的多层感知器就是一种深度学习结构。深度学习通过组合低层特征形成更加抽象的高层表示属性类别或特征,以发现数据的分布式特征表示。 深度学习的概念由Hinton等人于2006年提出。基于深度置信网络(DBN)提出非监督贪心逐层训练算法,为解决深层结构相关的优化难题带来希望,随后提出多层自动编码器深层结构。此外Lecun ...
协同过滤
协同过滤 协同过滤算法的主要功能是预测和推荐。协同过滤推荐算法分为两类,分别是基于用户的协同过滤算法(user-based CF),和基于物品的协同过滤算法(item-based CF)。 协同过滤作为一种经典的推荐算法种类,在工业界应用广泛,它的优点很多,模型通用性强,不需要太多对应数据领域的专业知识,工程实现简单,效果也不错。这些都是它流行的原因。 基于用户的协同过滤算法是通过用户的历史行为数 ...
聚类分析
聚类分析 聚类分析(Cluster analysis,亦称为群集分析)是对于统计数据分析的一门技术,在许多领域受到广泛应用,包括机器学习,数据挖掘,模式识别,图像分析以及生物信息。聚类是把相似的对象通过静态分类的方法分成不同的组别或者更多的子集(subset),这样让在同一个子集中的成员对象都有相似的一些属性,常见的包括在坐标系中更短的空间距离等。 一般把数据聚类归纳为一种非监督学习。 数据聚类算 ...
分类回归树
CART CART:分类回归树(Classification And Regression Tree, CART)模型是决策树学习方法的一种,CART既可以用于分类计算,也可以用于回归。 CART本质是对特征空间进行二元划分(即CART生成的决策树是一棵二叉树),并能够对标量属性(nominal attribute)与连续属性(continuous attribute)进行分裂。 CART算法原理 ...
聚类分析
聚类分析(Cluster Analysis) 聚类分析指将物理或抽象对象的集合分组为由类似的对象组成的多个类的分析过程。它是一种重要的人类行为。聚类分析的目标就是在相似的基础上收集数据来分类。聚类源于很多领域,包括数学,计算机科学,统计学,生物学和经济学。在不同的应用领域,很多聚类技术都得到了发展,这些技术方法被用作描述数据,衡量不同数据源间的相似性,以及把数据源分类到不同的簇中。 聚类与分类的不 ...
期望最大化
期望最大化(Expectation-Maximization) 期望最大化(Expectation-maximization)算法是由Dempster等人1977年提出的统计模型参数估计的一种算法。它采用的迭代交替搜索方式可以简单有效的求解最大似然函数估计问题。已知的概率模型内部存在隐含的变量,导致了不能直接用极大似然法来估计参数,期望最大化(Expectation-maximization)就是 ...
模糊c-均值
模糊c-均值聚类算法(Fuzzy C-means Algorithm) 模糊c-均值聚类算法,是一种基于目标函数的模糊聚类算法,主要用于数据的聚类分析。理论成熟,应用广泛,是一种优秀的聚类算法。模糊c-均值聚类算法输入就是一个待聚类的数据集,每一个数据都有p个特征。它的输出是一个c行n列的矩阵U,c刚才提到是聚类数目,n是数据集中元素的个数,用这个矩阵就可以表示分类的结果,因为你看某一列,表示的就 ...